廣州市天河區(qū)黃埔大道中124號(hào)2705室
電話:020-29031124
手機(jī):18102256923
Email:servers@gzscbio.com
Fax:020-85625352
QQ:2913120624
轉(zhuǎn)錄是遺傳信息從DNA流向RNA的過(guò)程。第一步合成原始轉(zhuǎn)錄產(chǎn)物(過(guò)程包括轉(zhuǎn)錄的啟動(dòng)、延伸和終止);第二步轉(zhuǎn)錄產(chǎn)物的后加工,主要有mRNA前體的后加工(裝上5′端帽子、裝上3′端多聚A尾巴、剪接、修飾)、tRNA前體的后加工(修飾、切除5′端和3′端多余核苷酸、3′端不含CCA順序的tRNA前體需裝上CCA順序)、rRNA前體的后加工(修飾、剪切、剪接)。
轉(zhuǎn)錄調(diào)控是指以DNA為模板合成RNA的調(diào)控,所有的細(xì)胞都具有大量序列特異的DNA結(jié)合蛋白,這些蛋白能準(zhǔn)確地識(shí)別并結(jié)合到特異的DNA序列,在轉(zhuǎn)錄水平上起著開(kāi)關(guān)的作用。轉(zhuǎn)錄水平調(diào)控是真核基因表達(dá)調(diào)控的重要環(huán)節(jié)。根據(jù)真核基因表達(dá)是否受環(huán)境影響可分為:發(fā)育調(diào)控和瞬時(shí)調(diào)控。其中發(fā)育調(diào)控是指真核生物為確保自身生長(zhǎng)、發(fā)育、分化等對(duì)基因表達(dá)按“預(yù)定”和“有序”的程序進(jìn)行的調(diào)控,是不可逆的過(guò)程;瞬時(shí)調(diào)控是指真核生物在內(nèi)、外環(huán)境的刺激下所做出的適應(yīng)性轉(zhuǎn)錄調(diào)控,是可逆過(guò)程。
1 機(jī)制原理
圖1 哺乳動(dòng)物轉(zhuǎn)錄調(diào)控原理
RNA聚合酶II是三大RNA聚合酶之一,存在于基因轉(zhuǎn)錄裝置的核心位置,編碼蛋白質(zhì)基因的轉(zhuǎn)錄受到RNA聚合酶的調(diào)控。RNA聚合酶解開(kāi)DNA雙鏈,沿著一條鏈移動(dòng)。在移動(dòng)過(guò)程中,它們一邊“解讀”DNA鏈上的核苷,一邊合成一條相應(yīng)的RNA鏈。由Pol II合成的RNA就是mRNA,它們將合成蛋白質(zhì)的指令傳給核糖體。
過(guò)往的研究證實(shí),在許多哺乳動(dòng)物的多個(gè)基因進(jìn)行轉(zhuǎn)錄時(shí),RNAPII往往會(huì)在啟動(dòng)子附近的某些特定區(qū)域發(fā)生停頓。這種停頓往往是發(fā)生在RNAPII復(fù)合體形成和轉(zhuǎn)錄起始之后。而這個(gè)轉(zhuǎn)錄早期延伸的時(shí)期也是許多基因調(diào)控手段發(fā)生效用的時(shí)期,在基因調(diào)控方面有著重要意義。
轉(zhuǎn)錄延長(zhǎng)促進(jìn)因子b(P-TEFb)是一個(gè)幫助RNAPII轉(zhuǎn)錄復(fù)合物從停頓位點(diǎn)釋放的具有激酶活性的重要輔助因子。通常情況下,P-TEFb被束縛于7SK snRNP復(fù)合體以中一種非活化狀態(tài)存在,當(dāng)其解離出來(lái)時(shí)才能激活轉(zhuǎn)錄?,F(xiàn)在已經(jīng)證實(shí)了7SK snRNP復(fù)合體的組成元件SRSF2(SR剪接因子)積聚在了基因的啟動(dòng)子上,在轉(zhuǎn)錄停頓釋放中發(fā)揮了直接的作用。通過(guò) SRSF2結(jié)合轉(zhuǎn)錄起始位點(diǎn)附近的新生RNA,SRSF2以一種RNA依賴性的方式,介導(dǎo)了P-TEFb從7SK snRNP復(fù)合體中釋放出來(lái),并激活了轉(zhuǎn)錄。這些新研究發(fā)現(xiàn)揭示了SR蛋白一個(gè)意外的功能,在基因激活過(guò)程中對(duì)啟動(dòng)子近端的新生RNA起作用,這與HIV Tat/TAR激活細(xì)胞基因的機(jī)制相類(lèi)似。
具體機(jī)制主要有以下幾點(diǎn):
(1)特異性因子:改變RNA聚合酶對(duì)于特定啟動(dòng)子或一套啟動(dòng)子識(shí)別的特異性,使得RNA聚合酶更多或更少地結(jié)合到這些啟動(dòng)子上(如原核轉(zhuǎn)錄中用到的σ因子)。
(2)阻遏因子:結(jié)合到DNA鏈上的靠近或覆蓋啟動(dòng)子區(qū)域的那些非編碼序列上,阻礙RNA聚合酶順利進(jìn)入此鏈,故阻礙了基因的表達(dá)。
(3)通用轉(zhuǎn)錄因子:這些轉(zhuǎn)錄因子將RNA聚合酶安放至編碼蛋白序列的起始位置,繼而釋放聚合酶以轉(zhuǎn)錄mRNA。
(4)激活因子:增強(qiáng)RNA聚合酶與特定啟動(dòng)子的相互作用,促進(jìn)基因的表達(dá)。激活因子通過(guò)增強(qiáng)RNA聚合酶對(duì)啟動(dòng)子的吸引而達(dá)到此作用,這一機(jī)制是通過(guò)與RNA聚合酶亞基的相互作用或間接通過(guò)改變DNA結(jié)構(gòu)而實(shí)現(xiàn)的。
(5)增強(qiáng)子:位于DNA螺旋結(jié)構(gòu)上的一些位點(diǎn),它們通過(guò)與激活因子相結(jié)合以將DNA彎曲使特定啟動(dòng)子朝向起始復(fù)合物。
圖2 啟動(dòng)子與轉(zhuǎn)錄因子的分類(lèi)及相互關(guān)系
2 調(diào)控激活方式
圖3 哺乳動(dòng)物轉(zhuǎn)錄起始GTFs的裝配
圖4 哺乳動(dòng)物轉(zhuǎn)錄調(diào)控激活方式
? A factor is tissue-specific because it is synthesized only in a particular type of cell. This is typical of factors that regulate development, such as homeodomain proteins.
? The activity of a factor may be directly controlled by modification. H5TF is converted to the active form by phosphorylation. API (a heterodimer between the subunitslunand Fos) is converted to the active form by phosphorylating the lun subunit.
? A factor is activated or inactivated by binding a ligand. The steroid receptors are prime examples. Ligand binding may influence the localization of the protein (causing transport from cytoplasm to nucleus), as well as determining its ability to bind to DNA.
? Availability of a factor may vary; for example, the factor NF-KB (which activates immunoglobulin Kgenes in B lymphocytes) is present in many cell types. It is sequestered in the cytoplasm, however, by the inhibitory protein I-KB. In B lymphocytes, NF-KB is released from I-KB and moves to the nucleus, where it activates transcription.
? A dimeric factor may have alternative partners. One partner may cause it to be inactive; synthesis of the active partner may displace the inactive partner. Such situations may be amplified into 652 CHAPTER 25 Activating Transcription networks in which various alternative partners pair with one another, especially among the HLH proteins.
? The factor may be cleaved from an inactive precursor. One activator is produced as a protein bound to the nuclear envelope and endoplasmic reticulum. The absence of sterols (such as cholesterol) causes the cytosolic domain to be cleaved; it then translocates to the nucleus and provides the active form of the activator.